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Kinetic few-body propagator by exact inversion 

M Znojil 
Nuclear Physics Institute, Czechoslovak Academy of Sciences, CS 250 68 Re?, 
Czechoslovakia 

Received 13 August 1979, in final form 5 November 1979 

Abstract. We present an exact formula for matrix elements of the free many-body 
propagator in the oscillator basis. It has the structure (a  + b z ) / ( c  + d z )  where a, b, c and d 
are polynomials in the energy variable w and the auxiliary function z ( w )  is defined by the 
continued fraction. 

1. Introduction 

The motivation of the present paper stems from the Schrodinger equation 

H*=- 4 H = T + V  W > O  (1) 

for the A-body system with T = k:  + k:  + . . . + k i  and with any realistic two-particle 
interaction V = X Vi. Let us consider an equivalent Lippmann-Schwinger form of (1): 

v* = 0. ( 2 )  
1 

*+o+T 
This is not only a starting point for the derivation of the three-body Faddeev equations 
and their A > 3 generalisations (cf, e.g., Vanzani 1978) but also a formulation of a 
bound-state problem which has definite numerical advantages (Gareev eta1 1977). The 
point is that in the standard harmonic-oscillator basis, the large matrix elements of the 
kinetic-energy operator T appear in the denominator. 

In practical applications (cf, e.g., Truhlik 1978) the numerical integration of the 
matrix elements of the full resolvent (W + T)-' is used. An alternative approach based 
on exact matrix inversion is also possible due to the sparse structure of the matrix 
representation of T. This approach was suggested by Bassichis and Strayer (1978) for 
A = 1 and was extended by Znojil(l979) to cases where A > 1. 

In the present paper we remove certain difficulties connected with the A > 1  
generalisation and derive an exact algebraic formula for an arbitrary matrix element of 
(W + T)-' in the oscillator basis (0 2). Its properties are discussed in the appendix and in 
OP 3 and 4. 

2. Algebraic formula 

We apply the Haydock (1974) expansion to the function (free propagator) 
00 

= A  1 d , + l ( ~ W ) ~ f l - l ( ~ k :  + . . . + ~ k i )  1 
w + k : +  . . .  + k i  n=O 

p=11+12+  . . .  +IA+$A (3) 
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2376 M Znojil 

using a complete set of Laguerre polynomials Lf-’ defined, for example, by Grad- 
shteyn and Ryzhik (1971). In terms of the auxiliary sequence a l ,  a2, . . . satisfying the 
recurrence relations 

a 1 = ( p  + A o  - @2)- ’  
1 (4) 

a m + l =  [ 2 + @  + A w ) / m  + P , ” ) a m + z I -  m = 1 , 2 , .  . . 
the expansion coefficients dn+l in ( 3 )  are defined explicitly as products: 

dn+l(Ao) = a n + l d n ( A o )  = * * a n t 1  It = 0, 1, . . . . ( 5 )  

It is proved in the appendix that a’s are continued fractions defined uniquely by (4) and 
that expansion (3) is convergent for any oscillator parameter A >0, binding energy 
o > 0 and angular momenta li 5 0, j = 1,2,  . . . , A. 

Next we investigate the matrix elements of the propagator (o + T)-’ 

KA = ( n l l l  . . n A l A .  . 4 /(U + T ) - ’ I n i l l  . n.!4lA. e )  (6) 

l n l l l  . . . n 2 1 2 .  . . nAlA.  . .) = I n l l l ) l n 2 / J .  . . InAlA) x angular part 

p r ( n )  = (-i)yn !/qn + 1 . 

in the oscillator basis 

(7) 

( k i d )  = R n / ( k )  = (2A’t5)1/2pl(n)k’ exp(-iAk2)Lr’(Ak2) 
3 1 /2  

The KA are diagonal in the angular quantum numbers and are defined as A-tuple 
integrals. 

Using expansion (3), the separation of variables is achieved by the well known 
identity 

L n  (Ak? + A k i  + . . . +Ak: )  1,+ ...+ lA+3A/2 -1  

The corresponding matrix elements (Talmi integrals) of the single separated factors 
( n l l l L : ’ ( A k ) l n z l )  = [ n l l m l n ~ ] ~  are given by the closed expression 

n+n’ 

n + m + n ’  (;)B(nln’l, 1 + p )  
p = m  

[nlmln’11= (-1) (9) 

where B(nln’1, p ’ )  are the Brody-Moshinsky (1960) coefficients. Hence, the A-tuple 
integration of the investigated matrix element KA may be performed in an explicit way 
by inserting expansions (3) and (8) in (6). The final algebraic formula reads 

n l + n i  nz+nh 

Note that the sum is finite and the coefficients d are defined by ( 5 )  and (4) as the finite 
products of the convergent continued fractions CY,, m = 1 ,2 , .  . . 1 (ni +ai). 
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For some purposes the necessary number of different continued fractions may be 
lowered by algebraic cancellations of the type 

etc. In accordance with the general prescription (cf Znojil 1978, appendix 2) ,  the 
systematic cancellations lead to the polynomial formula 

P ( i )  = A i ( w ) + B i ( o ) z ( w )  i = 0 ,1 ,  . , . J 
which is to be used instead of ( 5 ) .  Here, Z ( W )  is the continued fraction defined by (4 )  for 
m = J ,  

1 I 
z ( w )  = aJ+l= 9 (13) p +Aw ( J + P ) / J  2+-- 

J (J + p  + 1) / ( J  + 1 )  
J + l  2 +  . . .  

and Ai, Bi, i = 0 ,  1, . . . J are polynomials of degree i and i - 1, respectively, in the 
energy variable w.  They may be written in terms of the linear combination of the 
confluent hypergeometric functions, but the simplest definition is given by the three- 
term recurrence 

P(J + 1 - m )  = (Aw + 2 m  + p  - 2)P(J - m ) / m  

- (m  + p  - l ) P ( J - m  - l ) / ( m  + 1)  m = J - 1 , J - 2 ,  . . .  1 (14)  

initialised by 

P(0)  = J 

For any given set of quantum numbers (truncated oscillator basis), we may choose 
J L 1 + max Zt=l (ni  + n I) so that just one continued fraction is necessary for all matrix 
elements. Hence each sum (10)  is really equal to the ratio of two polynomials in w and z 
as stated in the abstract. Let us illustrate this for the lowest s-wave states (li = 0). The 
closed form of the matrix elements is 

P ( l )  = (Aw + 2 J + p  - 2) - ( p  + J - ~ ) z ( w ) .  (15)  

1 P(J  - 1)  h (00 , .  . .001----(00,. . . 00) =A-= 
w + T  P ( J )  p + AOJ -pa2 

(10 ,  00, . . , ~ - ~ l O , O O , .  1 
. .) = A  P(J - 1 )  -P(J  -2 )  +zP(J - 3) 

P ( J )  w + T  

1 P(J - 1) - ($)"2P(J - 2)  
P ( J )  

(10 ,00 , .  . . 1-100,. W + T  . . , 10,OO.. .) = A  
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3. Numerical properties 

A computational application of an exact algebraic formula is not necessarily better than 
the standard numerical techniques because of the possible loss of precision E .  We shall 
show that in our case a rigorous estimate of numerical errors is available. 

First, we note that there are three sources of the possible loss of precision 
E = + eZ + e3, namely the calculation of d ( A w ) ,  [nlmln'] and the final summation (10) 
respectively. The evaluation of dfltl(Aw) = alaz  . . . is discussed in the appendix, 
with the conclusion that the value of el (error in d ( A w )  or z ( U ) )  may be made practically 
negligible by the proper choice of the initialisation aN in (4). The sufficient value of the 
cut-off N is usually very small, except for the case of an extremely small value of the 
binding energy parameter Aw, which would require either N > 100 or an improved 
initialisation (cf table 1 and the appendix for details). 

Table 1. Differences a4(evaluated) - a4(exact) illustrating the convergence and stability of 
the auxiliary continued fractions ( J = p  = 3 ) .  Example: -55 in the row means 
a4(evaluated) -a4(exact) = -55 x lo-'. 

AOJ 0.1 0.5 5 
a4(exact) 0.560604155 0.479698107 0.244986 186 
Units of 6 io+ io-6 io-8 1 0 - ~  i o P  io-' 1 0 - ~  io-' 

30 60 120 10 20 30 5 10 

20 -50 -118 -71 
0 -55 -25 -37 -30 -84 -51 -9 -7 
1 -8 -2 -2 -4 -7 -3 
l-A;-A$ +4 +1 + l  
1 - ( A ~ / N ) ' / ~  +8 +15 +7 
1 +221 +61 +78 +lo2 +219 +179 

The second component EZ is, unfortunately, significantly enhanced by errors in the 
tabulated Brody-Moshinsky coefficients. It is necessary to recalculate the tables of the 
overlap coefficients [nlmln']. At the same time we minimise eZ by employing the 
symmetry of the Talmi integrals 

where we choose m3 = max(n, n', m )  and m l  = min(n, n', m )  to eliminate some of the 
sign changes. - 0, the final precision of KA will be determined practically by 
e3 .  Since the typical values of d ( A w )  are of the order of unity, the loss of precision E in 
the sum (10) will be determined roughly by the order of the maximal term (pivot). The 

Thus, provided that 
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empirical fit [ n  In In] - 7.5" leads to the estimated number E = c3 = n lg 7.5 2: gn of 
incorrect decimal digits where n =max(ni, n : )  corresponds to the truncation of the 
oscillator basis. The linear growth of E with n is quite acceptable in practice and enables 
us to specify a priori the possible higher-precision requirements in the computer code. 

For practical purposes the code is to be complemented also by the remultiplication 
of the identity 

(U + T)(u  + T)-' = (U + T)KA = 1. (19) 
This is a very simple test (sum of 3A terms only) and it determines practically the actual 
value of E .  The numerical example of such a test is shown in table 2. 

Table 2. Loss of precision E (in decimal digits) in KA for A = 2, I = 0 and w = A = 1 

n2 0 1 3 
n l  0 5 2 5  3 

n i  n ;  
~~ 

0 1  0 0  0 0  0 
0 3  0 2  0 2  1 
1 4  0 3  1 3  1 
4 4  0 3  0 3  2 

4. Concluding remarks 

The applicability of our formula for KA is not restricted to the Lippmann-Schwinger 
equation (2) or its connected-kernel descendants. That is, Ka also defines the kernel of 
the reference spectrum form of the Bethe-Goldstone equation in Brueckner theory, 

(20) 
1 

Q --= -- 1 

where A = 2 and P = 1 - Q denotes the so called Pauli projector and defines here the 
truncated oscillator subspace (cf also equation (4) of Znojil (1976)). 

It is important that in the formula for K A  the transition to the many-body (A > 1) 
case is quite straightforward. Even the bad asymptotic behaviour of + in the oscillator 
basis may partially be improved, in analogy with the A = 1 case (Gareev et a1 1977). 
Using the identity (2), i.e. the transformation 

* -+ - (w + T)-' v*, 
we replace the oscillator function &(r) = (rlnl)  = i2"+'A-3'2Rnl(r/A) by its asymptotic- 
ally correct modification 

- ( r / (w  + T)-' Vl(r)lnl)  

= K I + I  (v) lordCf211+; (r5)Vd5)fifl1(5) 
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With the asymptotically well behaved MacDonald functions K and I and for y 2 =  
k :  + k: + . , . + k i  +U, this leads to the correct exponential asymptotic behaviour in 
the coordinate r = rl. 

Appendix. Properties of the continued fractions 

(i) Let us assume that the recurrence relations ( 4 )  are initialised by the arbitrary 
value aN for sufficiently large N. Then, after a few applications of ( 4 ) ,  the value of (YN-k ,  

k >> 1, N >> k becomes independent of aN. This may be shown most easily by putting 
a,+l= 1 -Amcl .  Then the recurrence ( 4 )  has the form of the rational mapping 

a + b x  
b > 0 ,  c > O ,  d > O  y=c,dx 

with 
a = a, = w / m  

c = c, = 1 + w / m  

b = b, = l + p / m  

d = d, = 1 + p / m  (A.2) 
and x =Am+2,  y =Am+l ,  and it becomes roughly independent of the index m for a 
sufficiently large value m >> 1. A repeated application of (A. l )  gives  AN-^ approaching 
zero from below. The practical consequence of this is the numerical stability of the 
algorithm represented by the recurrence ( 4 )  with arbitrary initialisation. 

(ii) A more detailed investigation of the values of am for large m must take into 
account the changes of m. Again, we may consider ( 4 )  as mapping (A.1)- For 
4a  > -(c - b)’ /d ,  it may be proved that the fixed point R of this mapping is given by the 
plus-sign root 

2a R =  
~ - b + [ ( ~ - b ) ~ + 4 ~ d ] ~ / ~  (‘4.3) 

of the corresponding quadratic equation. With the exact values of the parameters (A.2) 
we thus get 

Of course, due to the changes of m in the repeated use of ( 4 )  the approximation 
Amtl ==A:) may be used for m >> 1 only. Nevertheless, the leading-order term gives 
(Y,+I= 1 - (w /m)1 /2  and implies the convergence of the infinite sum (3 ) .  

(iii) The preceding procedure (subtracting the fixed-point approximation) may be 
repeated by putting A,+1 = A:!l = A:) +AELl  and in general 

A:Ll = +A:::) k = 1 , 2 , .  . . . (A.5) 
In the ( k  + 1)th step, the mapping x = A‘,kz:’ -$ y = 
the fixed point A:+’) exists and is given by (A.3). The corresponding parameters 

m + l  has the form (A.l) again and 

a = a ( k + l )  = -(A‘,k’-Aj,kLl)(bjnk’-d, (1) Am (k) ) 
m 
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where k = 1,2 ,  . . . are defined in the recurrent way from the initialisation (A.2) (k = 1). 
For m >> 1,’the leading term of behaves like Kk/’ for k 2 1. This may be proved 
from explicit formulae for k = 1 and 2, and then using the smallness of As’ m + l  = 
0 (m -(k +’)/’ ) for all k a 3. In this way we obtain an alternative representation 

(A.7) -(I) -0) - (3)  
(~,+1= 1 -Am -Am -A, - . . . 

of our continued fraction as an infinite series. 
(iv) In table 1 a few examples are shown. We observe an acceleration of con- 

vergence and a monotonous decrease of z ( w )  = aJ+l (J  = 3) with increasing of Ao. The 
numerical stability is illustrated by the ‘mad’ initialisation (YN = 20. The tabulated 
deviation S = a4 (evaluated) - a4 (exact) considered as a function of the initialisation (YN 

is monotonous and has a zero in the interval (0’1). Because of this, and because of the 
changing sign of A(k)-  (-l)k, the sequence of partial sums of (A.7) (including the trivial 
pair 0 and 1) generates the lower and upper bounds of and represents an extremely 
useful initialisation for (4). For example, for Aw = 0.1 and a 3 0  = 0 (simple truncation) 
table 1 shows that the value a4 (evaluated) = a4(exact) + 6 = 0.56060 - 5 5  x lo-’ = 
0.56005 is lower than the exact value by 0.1% while for a60 = 0 (double cut-off) or 
a 3 0  = 1 (improved initialisation) this error is reduced by an order of magnitude. 
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